
7 AD-165 225 IRIG FORMAT 'B' DECODER(U)
OKLAHOA STATE UNIVSTILLARTER ELECTRONICS LAB J PEARSON ET AL JUN 85

SCIENTIFIC-4 AIFGL-TR-85-0193 Fi9628-8i-C-8879

UNCLASSIFIED F.'G 9/2 N

so EEEnhi

__ 11112.0O

111111.25 I11_4 11.6_

41ROOPY RESOLUTIO 4 TE ST CHART

AFGL-TR-0193

1

IRIG FORMAT "B" DECODER

John Pearson
Jerry Grayson

Oklahoma State University
Electronics Laboratory - C E AT

e Stillwater, Oklahoma 74078

June 1985

Scientific Report No. 4

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MA?.SACHUSETTS 01731

86 3 14 019

"This technical report has been reviewed and is approved for publication"

(Signature)0eS a ure
M., FTH R. WALKR RSSELLG. STEEVES

Contract Manager Branch Chief

FOR THE COMMUADER

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) anad
is releasable to the National Technical information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense
Technical Information Center. All others should apply to the Nation .5
Information Service.

If your address has changed, or if you wish to be removed from the mL,:iig
li-st, or if the addressee is no longer emyloyed by your organization, ;lease
notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in
maintaining a current mailing list.

QW UITY CLASSIFICATION OF THIS PAGE (**hen Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
___ BEFORE COMPLETING FORM

1. REPORT NUMWER 2Z. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFGL-TR-85-0 193
4. TI TLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

IRIG Format "B" Decoder Scientific Report No. 4

John Pearson

Jerry Grayson F92-1C07

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Electronics Laboratori - CEAT AREA II WORK UNIT NUMBERS

Oklahoma State University 62101F
Stillwater, OKlahoma 74078 76590B

$I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Geophysics Laboratory June 1985
Hianscom Air Force Base, Mass 0173113NUEROPAS
Attn: Ken Walker/LCR 22

14. MONITORING AGENCY NAME & ADDRESSIl different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public r2lease: Distribution Unlimited

17 DISTRIBUTION STATEMENT (of ?lie abstract entered In r lck 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary tind Identify by block number)

Microprocessor, IRIG 'B" Time Code, DEcoder, Single Task, Multi-task.

20. ABSTRACT (Continue on reverse side It necessary a id identify by block number)

This report describes a special ipplication of a microprocessor for decoding
a serial bit stream of data fron' an IRIG "B" time code generator. The report

covers theory ot operation, suggestions for improvement and modification and

a listing of the system software.

DD I JN 7 1473 EOI -ION OF I NOV A5 IS OBSr-LETE Ucasfe

SECURITY CLASSIFICATION OF THIS PAGE (I1h,,,, Dale rrer-d'

SUMMARY

The Oklahoma State University Electronics Laboratory has developed a
microprocessor-based IRIG format "B" real-time decoder. This circuit will provide a

parallel BCD output to any device which requires this information. This decoder accepts
standard unmodulated IRIG "B" code and provides the time in a continuously available
parallel output. The 34 bit BCD output includes tenths of seconds, seconds, minutes,
hours, and days. This output is updated ten times per second. The system has a backup

timer which will be implemented when the system senses a failure of the IRIG input
signal. However, the system will return to its normal mode of operation upon return of
the IRIG signal.

National Semiconductor's NSC800 microprocessor has been implemented to

control the all-CMOS decoder. The system is based on software for the purpose of
reducing weight, parts count, power consumption and cost. Basically, the system is a
microcomputer which is programmed for only one task. However, the system is not
dedicated and other programs may be excecuted transparently. From a hardware point

of view, the same general system could be used as a basis for other NSC800-controlled

applications.

This report covers design details, theory of operation , and suggestions on

modifying the software to accomodate different clock speeds. In addition , a listing of
the system software is provided in the appendix.

/ ,'
S.;IV

TABLE OF CONTENTS

Topic Page

I .0 INTRODUCTION I

2.0 SPECIFICATIO'NS 2

2.1 INPUTS 2

2.1.1 Power Requirements 2

2.1.2 Code Input 2

2.2 OUTPUT'................................. 2

2.3 SYSTEM TIME BASE 2

3.0 T-EORY OF OPERAT ON 3

3. I Hardware 3

3.2 Softwa e 4

3.2.1 Primary Decoder Software 4

3.2.2 Back-up Timer Software 7

4 .0 ADJUSTFEN.TS 1............................ 4

4.1 Accuracy of Back-up Timer 14

4.2 Changing System Clock Frequency 14

5.0 SYSTEM DEDICATION 15

Appendix A Complete software listing 16

V

I , ", ,- .--. . -., -

LIST OF ILLUSTRATIONS

Figure No. Title Page

3.3 Block Diagram 9

3.4 Flow Chart 10

3.5 IRIG-B Code Illustration 12

3.6 System Memory Map 13

vi

1.0 INTRODUCTION

The IRIG format 'B' decoder accepts serial unmodulated IRIG time code from an

external source and provide-s a parallel BCD time-of-year output. This output may be

used at any time by any device that requires this information.

Upon power-up , the circuit will begin searching for the IRIG framing bits. When

these bits are found, the system begins reading the incoming bits and formatting them

into digits. As each group of digits is formatted into seconds, minutes, hours, and days,

they are sent to the output ports and software buffers in RAM. This is the only frame

which will exhibit significant delays. The output for all further frames is controlled by

the software buffers and or ly refreshed by the formatted IRIG code. In this way , the

great majority of input-to-o Jtput delay is eliminated.

In the event of IRIG failure, an on-board backup timer will respond within

seventeen milliseconds to continue providing the necessary output, assuming that the

software buffers contained the correct time prior to failure. The backup timer will

continue until the IRIG code is resumed.

The system also incorporates a program-controlled hardware overseer which

checks to see that the CPU does not ever stay 'lost'. If the system becomes 'lost' for

more than 35 milliseconds, the system will be totally reset and begin searching for the

framing bits again. If no bits are found while searching for the fra. 1e, the backup timer

will take over.

Y.'i ,,€ , °' ° -''.'" ' " v." "- .,- - - 4 . .. , ,,., . .. ,.I

2.0 SPECIFICATIONS

2. 1 INPUTS

2.1.1 Power Requirement

i. 5 volts D.C. at approximately 32 mA

2.1.2 Code Input

i. Format: IRIG B BCD serial time of

year. (Control functions and straight binary seconds may be

included in the code and wil not affect the operation of the

decoder).

i.i Amplitude: input logic high - above 3.5 vdc

input logic low- below 1.5 vdc

i.i.i. Input Capacitance:I0-15 picofarod
iv. Input to Output

Accuracy: Primary: 5.4ms delay max
Backup: accuracy is dependent

upon the system time base.

2.2 OUTPUTS

2.2.1 Code Output

i. Format: Parallel 34 bit BCD time of

year

seconds/10 4 bits

seconds 7 bits

minutes 7 bits

hours 6 bits

days 10 bits

i.i Amplitude: logic high, 5 VDC

logic low, 2mV DC

iii. External load: 500 ohms maximum

2.3 SYSTEM TIME BASE

i. Type Crystal Controlled Oscillator

ii. Frequency 2 MHz

2
- .. -

3.0 THEORY OF OPERATION

3.1 Hardware

Refer to the block diagram in Figure 3.3 or Schematic drawing number
D42CR02. The heart of the decoder is the NCS80ON CPU. In this application, the CPU
will respond to one of four possible conditions:

I. If IRIG is present, the CPU will be interrupted on every negative edge of

the incoming code.

2. If the IRIG input fails, the CPU will be interrupted by a failure timer that
has sensed the absence of the IRIG code.
3. If IRIG has failed and the CPU has been interrupted by the fcilure timer,
it will then be interrupted by a 100 Hz self-generated pulse stream.
4. If the CPU gets lost, an automatic system reset will occur.

In case # I, when IRIG code is present, the NSC810 measures the duration of the
incoming pulses and makes this data available to the CPU. The CPU then determines
whether the pulse is a logic 'I' , a logic O0, or a position marker. (see IRIG format

illustration, page 12). Section 3.2 will discuss how this is done.

The interrupt caused by IRIG failure is produced by the NSC810 PlO, (case # 2).
This chip will interrupt the CPU if the expected interrupt caused by incoming IRIG does
not occur within 17ms. Seventeen milliseconds was chosen since IRIG should interrupt
the system at least once every I6ms. When the NSC810 does interrupt the CPU, the
NCS810 is reconfigured to produce a I OOHz pulse stream that replaces the missing I 00Hz
IRIG code and allows the d(coder to continue the time from where it left off prior to
IRIG failure, (Case #3)

In case # 4, the system will be totally reset if a certain "known" subroutine is not
executed periodically. This insures that if the CPU becomes "lost", the entire system
will be reset. This is accomplished by restarting the 35ms CD4098 one-shot every time
the "known" subroutine is executed. Thus, if the CPU becomes lost, the first half of the
one-shot will "time-out" and trigger the second half of the CD4098 which in turn will
hold the RESET line low for a short period of time.

The NSC8IO PlO contains 128 bytes of useable R/W memory, 22 I/O ports, and two
internal timers designated is a timer zero and timer one. The RAM is used for the
system stack, software flag storage, and timer buffers. Nineteen of the 22 I/O ports are
used for IRIG input and timer 1/O . Timer zero is used to determine the duration of the
incoming IRIG pulses. Timer one is used to look for the possible 17ms absence of IRIG in

3

! h" ", " ""L " "' A" ""

the case of failure . Timer one is also used to produce the 100 HZ pulse stream when the

system is in its backup mode.

The NSC-831 is also a PIO, but contains only ports. The NSC831 (no ROM) was

chosen over the NSC830 (with ROM) since the development of the system would require

many software changes. This method will also allow the addition of other programs that

may be added to the existing 27C16 EPROM.

Since the NSC800 family utilizes multiplexed address c-id data lines, the 82PCI2

demultiplexer was used to provide separate address and data I nes to the 27CI6 EPROM,

which stores the decoder software.

3.2 Software

The system software can be broken into two main segments- primary and backup.

Refer to the flowchart in Figure 3.4 (a) and (b). Under normal conditions, IRIG is being

read. The decoder output is a reflection of the incoming code and only primary software

will be executing. In the case of IRIG failure, the backup software will take over and

begin producing the necessary output until the IRIG code input is resumed. (See page 16

for a complete software listing.)

3.2.1 Primary Decoder Software

The primary or main program begins by initializing the output ports. These ports

may be used as inputs or outputs. In this case, all are configured as outputs except the

NSC810's port C bits 3 and 4 which are used as inputs by the imers. Upon power-up of

the system, all ports are automatically configured as inputs for the purpose of preventing

any ambiguous output levels from triggering devices that may be connected to these

outputs. A port in the input mode is in a high impedance state. In addition to initializinq

the ports, two flogs described below are set to zero:

'OUTENBL' This flag keeps the software buffers disabled until the first
.'frame of IRIG has been decoded and sent to the ports.

OUTENBL = $00 during the first pass of IRIG after power-

up. The software buffers are disabled.

OUTENBL $FF after the first p iss of IRIG. The software

buffers will be er abled until the system

restarts from power- up again.

4

'BAKFLAG' The NSC-810's timer I is used for two purposes. It is used as

an IRIG failure timer during the primary program sequence and

as the 100 Hz pulse generator in the event of IRIG failure.

Since both timer functions use the some output, and hence the

same interrupt line, this flag is needed to differentiate

between the two functions.

BAKFLAG = $00 when timer I is configured as the IRIG

failure sensor. The IOOHz pulse generator is

disabled.

BAKFLAG = $FF when IRIG has failed, timer I has been

configured as the 100Hz pulse generator, and

the program is in the backup mode. The 17 ms

IRIG failure timer is disabled.

The next step of the main program is to find the framing bits of the IRIG code.

This is accomplished by testing each incoming bit until two consecutive position markers

(8ms) are sensed. This segment uses a !ubroutine called 'GET' which is responsible for

reading one incoming bit and determining what it is (i.e. logic 0 or I, or position

marker). After the program is synchronized, the tenths and hundredths of seconds

counters are reset to zero. The hundredths counter increments once for every incoming

pulse. That pulse will either be due to incoming IRIG code or the system-generated

100Hz back-up pulse generator. When the hundredths count buffer, 'HUN', reaches ten, it

resets to zero and incrememts the tenths count buffer, 'TEN'. Then, as more pulses are

read, the tenths count increments until it is time to increment the seconds count,

minutes count, etc. Therefore, after the first IRIG code stream initializes these

software buffers, they contir ue to calculate the present time every hundredth of a

second and send it to the output ports every tenth of a second. This way, the program

does not have to wait for the delayed IRIG serial data to be read and decoded each time

before it is sent to the ports. The IRIG time is simply sent to the software buffers once

per second as a reminder of what the bLffers should contain. This insures that if the

incoming IRIG code is changed, or an error is produced by the buffers, the error will be

corrected during the next IRIG frame.

S

Now that all ports and buffers have been initialized and the program has

recognized the framing bits, the program will begin reading code. Since the incoming

code is pulse width logic, the NSC810's timer 0 is used to measure the length of each

incoming pulse. The process begins by calling the subroutine, 'GET'. This subroutine sets

timer 0 to a mode that causes it to act as a down-counter. It begins decrementing from

a predefined 'modulus' value whenever a positive transition occurs during the incoming

IRIG code. The modulus will decrement once for each 64 system clock pulses, and stop

decrementing after the IRIG pulse has dropped back low again. This function is also

determined by the timer mode selection.

Not only does the negative transition cause the modulus to stop decrementing, but

it also causes a CPU interrupt via RSTA. (Case #1 as discussed on page 3). When this

interrupt occurs, the decremented modulus value is read from the NSC810 and used to

calculate the width of the pulse and hence, the pulse's logic value.

In our case, the modulus was initially loaded with $FFFF. The system clock

frequency is 2 MHz which makes the timer effectively see an input frequency of

2 MHz /64 = 31.250 KHz, resulting in an effective timer period of 32 microseconds.

Therefore,

PULSE WIDTH = (MODULUS -DECREMENTED VALUE) X 32us.

This width can then be compared to expected IRIG pulse widths to determine what

the pulse is. For this software the width definitions are:

Accepted Expected

Definition: Pulse Duration: Duration:

logic '0' less than 3.5ms 2ms

logic I' 3.5ms to 6.Sms Sms

position marker greater than 6.Sms 8ms

3efore the defined bit is sent back to the calling roul;ne, the software counters

are incremented by one hundredth.

Since IRIG code comes in the same code word structure every frame, (e.g.

seconds, then minutes, then hours etc.) we know when to expect each digit of the BCD

time. These BCD digits are then sent to both the output ports and to the "look-ahead"

software timer buffers where they overwrite any previous value. It is assumed that

under the expected conditions, though, the software-calculated time and decoded IRIG

6
4,.

time will be equal. After the DAYS value has been read and sent to -he ports and

buffers, the program jumps back to the framing routine to get ready to read the next

frame.

The 'I5ET" subroutine also sends a pulse to the automatic system rset circuitry

composed of the CD4098 monostable multivibrator. This circuitry is activated by

reading or writing to any memory location on page $30. If the system i! operating in

either the primary or backup mode properly, the "GET" subroutine will be e:ecuted every

lOins. Therefore, every lOtas a pulse is sent to the first half of the CD4098. These

continuously-applied pulses keep the one-shot in its high state and prevent it from timing

out and producing a high-to-low transition. If the CPU gets lost and does not send the

retrigger pulse, after 35ms the first half of the one-shot will time out and ":all from high

to low. This negative transition causes the second half of the CD4098 to pull low for a

short period of time. Since the output is connected to the CPU's reset inp. t , the entire

system will be reset and the program will begin from location $0000 in ROM. This reset,

however, will not destroy the contents of RAM. Thus, even if the system was in its

backup mode, a reset will only cause a small delay and will not destroy the timer buffers

or the software flags.

3.2.2 Back-up Timer Software

In order for the back-up timer to function properly, it must f'rst sense the absence

of IRIG code, update the software buffers, and then check for the returr of the IRIG

code.

The absence of IRIG input is detected by first realizing that the longest delay

between any two IRIG negative pulse transitions is 16 milliseconds. (See IRIG

illustration, page 12). On the negative transition of every IRIG pulse, a 1I millisecond

timer is started. When the l7ms timer 'times out', a pulse is sent to the CPU via the

RSTA interrupt. Again, since the longest delay expected when reading RIG code is

16ms, if IRIG is still present, it should have already interrupted the CPU before the 17ms

timer did. The IRIG interrupt also disables all futher interrupts, and thus the 17ms 'time

oat' pulse will be ignored.

Now, assuming that the CPU has been interrupted by the IRIG failure timer, the

program jumps to the back-up timer routine. This routine generates a 100 Hz pulse

stream by reconfiguring the same timer that was just used for IRIG failure detection.

This new pulse stream simulates the 100 Hz IRIG pulse stream. Once this independent

pulse generator is started, the program returns to the framing routine in hopes of

7

detecting IRIG code again. Since the back-up routine was executed, 'BAKFLAG' has been

reset so that the IRIG failure detector is disabled, thus preventing the reconfiguration of

the 100Hz timer again. Both NMI and RSTA are enabled during the bock-up routine

execution. This allows IRIG to regain control upon its return by interrupting the CPU via

the NMI interrupt input.

8

lovAll r
-e s~~.

~~~23~~4 V_________ r.* aL

o /$dpars

Q Qi

74 C

.0 (0--a)

A (0 - 7

Figure 3.3 IRK" 'B' Decoder Block Diagram



O~rg S AL Sr~A~

c.AJ* j4.- ra

Po~~er ~~ ASO ;AF-

* re;~T a., r /.SVA AlaQdi
.OE~&~ P ,00.f f-I/e ro s, AlL/~£

AA SAYS

Fiqre3. () ni PogamF wcr

yes

e~q4. zo r 45 rl",s Y9

12M~rS A~j &vj.wAE&



SECC 7-

i~~~ATEA SOLA'*

~~~~A~~A 4/A*~4rt. ~ ~dA

IIs

Lu z
*j

2,.. - U

0 us

o4 -0

0~ op E~

aa a r- W Cc

E 0 c

z0 t 0- cc C 0i 0 f 0
to o t<a

w ~ E .2

I.- c, E2 c!cIII~ ~m i
0x 2 wE q _0 c

L, Zu Z

0 Z CL2 wu 0

cc 4Or-CLCLO - .

1.1. w 0. - E .

12Q

0800-

QC CA It j

A/c As-~/j,. o I 2 00

20 7.4w

z00 o -r'

VAIN~ ~ ~ L-,4/ A994

.0000-

20/0-

MEMOM/4 r~ lo Aiqp

Fiur 3.0yte0eor-O

13O

4.0 ADJUSTMENTS

4.1 Accuracy of the Back-Up Timer

The back-up timer accuracy is directly dependent upon the accuracy of the

system's timebase, since the 100 Hz pulse generator is produced by counting a

predetermined number of clock periods from the CPU's clock output. The frequency of

the back-up timer can easily be set to 100Hz and fine tuned with small changes in the
CPU's oscillator input frequency. Presently, under software control, the tuning

resolution is in steps of 5.0003 milliHz for every one-digit change in timer I's modulus

value.

4.2 Changing System Clock Frequency

Although the decoder relies totally on the CPU clock frequency of 2 MHz as a

reference for all timing operations, a change in the system's clock frequency requires

only minor changes in the decoder's software. The range of acceptable CPU speeds

depends upon the mode of the NSC810's timers, and the initial value of the timer's

* modulus. For a more complete description of the operation of the timers, see National

Semiconductor's NSC8 10 product description.
If the system clock frequency is increased or decreased, the modulus will

decrement faster or slower, respectively. Therefore, it is necessary to make changes in

the software routines which use this modulus value to define the incoming pulses, both

primary and backup. The following general procedure can be followed.

If the frequency is increased, the numbers that the modulus is compared to (after

the incoming IRIG pulse has caused the modulus to decrement to a certain value) will

need to be changed since the modulus will be decrementing faster. (Refer to the 'BIT'

subroutine in the software listing in appendix A). The5e numbers are easily calculated.

For example:

Incoming position marker has a pulse width of 8ms

CPU Clock Period = 0.5us

Timer input PRESCALE = divide by 64 (defined by timer mode)

2 Byte modulus (also defined by timer mode)

Therefore, the modulus value will decrement every (64 X 0.5us) = 32us.

The expected modulus value after an 8ms pulse has been read by the timer would

be $FFFF-(8ms/32us)= about $FFO5. A two byte modulus was used since a one byte

14

modulus can only measure a maximum width of $FFX32us = 8.16ms. If the position

marker was longer than 8.16ms, a one byte modulus would cause an error. If a two byte

modulus was used, the high byte would simply decrement by one every time the low byte

reached zero. Therefore, to determine what each pulse is, the high byte of the modulus

is checked to see if its least significant bit is equal to zero since the high byte will

decrement from $FF to $FE. If so, we assume that the pulse is a position marker in

excess of 8.16ms. If the LSB of the high byte is still a 'one', the pulse must have been

less than 8.16ms. The low byte is then checked for greater than 145 which represents a

time less than 3.Sms. A count greater than 145 indicates a logic zero and a count less

than 145 indicates either a logic one, or a position marker less than 8.16ms long. If the

count was less than 145, it is checked for greater than 52. If the count is greater than

52, the pulse was more than 3.Sms long and less than 6.Sms, indication that pulse was

probably a 5ms logic 'one'. If the count was less than 52, it is assumed that the pulse

probably was a position marker shorter than 8.1 6ms.

Since one of the above three pulses will occur every lOms, the software timer

buffers are incremented immediately after the pulse has been defined.

5.0 SYSTEM DEDICATION

The decoder was designed to be as non-dedicated as possible to the single task of

translating IRIG code. The system uses only two of the available five interrupts to

accomplish the decoding. Presently, after the program decodes eczh pulse it waits for

the next one by halting the processor and enabling the interrupts. The processor waits

anywhere from 3ms to ISims before the next IRIG bit interrupts the CPU from its HALT

state. Since execution of the primary program takes less than S00us, at least 2.Sms are

available out of every lOtas for other tasks before the CPU is expected to be interrupted

again. If the program is in the back-up mode due to IRIG failure, the 100 Hz interrupt

sequence is self-generated and predictable. Therefore, in the back-up mode there is at

least 9.Sms of CPU time available out of every lOins. Any auxilliary program may be

executed during this period in the primary or bxkup mode as long as it either returns to

the decoIcr program prior to the next expectet' IRIG pulse or makes sure that the RSTA

interrupt is enabled so that IRIG or the bac',-up timer may interrupt the auxilliary

program when needed. It is also imperative that the CPU stack be restored to its

original state prior to returning to the decoder program.

IS

APPENDIX A

IRIG B DECODER SOFTWARE LISTING

16

ASEG
* Z80

; "'*'**'*'' '''* IRIG FORMAT 'B' DECODER SOFTWARE LISTING ****************

-------------------------------. DEFINITIONS ------

;PIO related definitions

MDRO EQU 0A007H ;mode definition register addressTMRO EQU 0A018H ;timer 0 mode register address
MDO EQU 00H ;mode definition register set for BASIC I/O
TMO EQU 11011011B ;timer 0 mode set for pulse width meas'mnt
TIMERO EQU 0A010H ;modulus value address timer 0
TOSTAR EQU OA015H ;write causes timer 0 to 'start'
TOSToP EQU 0A014H ;a write causes TO to 'stop'

TMRi EQU 0A019H ;timer 1 mode register address
TMIDEL EQU 01011001B ;Timer 1 Mode set for a l7mS delay
TMIPULS EQU 01011001B ;Timer 1 Mode set for 100Hz pulse generator
TIMRONE EQU OA012H ;T1 modulus address
TiSTAR EQU 0A017H ;TIMER 1 start address
TISTOP EQU OA016H ;TIMER 1 stop address

ICR :.-U OBBH ;INTERRUPT CONTROL REGISTER

DDRA EQU 0A004H ;ADDRESSES OF NSC810 DDR'S
DDRB EQU OA005H
DDRC EQU 0A006H
PORTA EQU 0A00OH ;ADDRESSES OF NSC810 PORTS
PORTB EQU 0A001H
PORTC EOU 0A002H

DDA EQU 9004H ;ADDRESSES OF NSC831 DDRIS
DDB EQU 9005H
DDC EQU 9006H
PRTA EQU 9000H
PRTB EQU 9001H ;ADDRESSES OF NSC831 PORTS
PRTC EQU 9002H

HUN EQU 2000H ;LOCATIONS OF SOFTWARE TIMER
TEN EQU 2001H; BUFFERS
SECND EQU 2002H

- MINUT EQU 2003H
HOUR EQU 2004HDAYS EQU 2005H ;low 8 bits of DAYS

DH EQU 2006H ; high 2 bits of DAYS
BAKFLAG EQU 2007H ;backup 100hz pulse generator enable
OUTACK EQU 2008H0 ;output enable for software timers

AOKAY LOU 300011

* ORG 0000
JP START ;SKIP OVER INTERUPT VECTORS

; --------------------------------- VECTORS ------------------------------------

ORG 3CH
CALL BACKUP ;RESTART [A) interrupt vector
POP AF simulate returns from
POP AF RSTA & 'GET'

JP FRAME1 ;continue checking for irig
ORG 66H mnon-maskable interrupt vector

EX AF,AF

LD A,(BAKFLAG)
CP 00H
JR ZEXCH
jP START ;since we have interrupted the executionEXCH: EX AF,AF ;of RSTA, we will start back at square 1
CALL BIT ; since the stack is probably messed up
RET :RETURN FROM NMI

A-i

%7~-
-

-- - - - - - -- - - - - - INITIALIZATION - - - - - - - - - -- - - - - - - -

ORG 80H

LO A,0
LD (OUTENBL) ,A

START: LD A,OFFH ;top of RAM
LD (DDRA),A ;set up DDR's of ports
LD (DDRB)KA ;these ports has inputs
LD (DDA),A
LD (DDB),A
LD (DDC),A
LD A,2714
LD (DDRC),A ;NSCB1O's PORT 'C' has some inputs

INIT: LD SPSTACK ;set up stack in NSC81O's top of RAM
LD A,0 ;clear the backup flag
LD (BAKFLAG) ,A

------------------------------------- MAIN PROGRAM----------------------------------

* The primary program checks for the presence of the 2 IRIG
markers. When these are found, the program begins reading the
incoming code. The code is input in serial, changed to parallel,
and then sent to the parallel output ports. Inaddition to being sent
to the ports, the time code is also sent to the software timers
which update the ports every 10 milliseconds, and thus eliminate
most of the INPUT-to-OUTPUT delay eikur.

FRAMEl: CALL GET ;the program will fall through this loop
LD A,C aonly when 2 consecutive pulses grea'-r
CP OFFH ,than 6.5 mS are detected
JR NZ,FRAME1 a(MARKERS)

FRAME2: CALL GET
LD A,C
CP OFFH
JR NZ,FRAME1

LD A,0 ;reset hundredths and tenths buffers
LO (HUN),A
LD (TEN),A

;NOW WE'RE IN SYNC, SO LETS START READING TIME CODE

SEC. CALL DIGITS ;get the first 2 digits of seconds
LO (PORTA),A ;Send seconds to port
LD (SECND),A ;send seconds to buffer

MIN: CALL CHECK ithis bit should be an SinS marker
JR NZ,FRAME1 if not, get re-framed

CALL DIGITS ;get next two digits
LD (PORTB),A ;send minutes to port
LD (MINUT),A ;send minutes to buffer

HOURS: CALL GET tignore this bit
CALL CHECK ;make sure this one is a position iden-
JR NZ,FRAME1 itifier (Sins marker)
CALL DIGITS
LD IPRTB),A ;send 'ours
LO (HOUR) ,A

DYS: CALL GET ;ignore this bit
CALL CHECK ;Check position again
JR NZ,FRAaqE1
CALL GET4
CALL SHIFT
LD D,A ;save <A>
CALL GET a ignore this one
CALL GLT4 iget the next 4 bits
OR B

LD (PRTA),A ;send Ist 8 bits to ports
I.D (DAYS),A ;send to buffer

A- 2

TIIEHRE: CALL CHECK ;check position
JR NZ,FHAME1
CALL GET
LD BC
SRL B ;now, get the last 2 bits of DAYS
CALL GET ; to determine the MSD
LD A,C
OR B
RLC A
RLC A
LD (PORTC),A ;send final digit to port
LD (DH),A ;send to buffer
LD A,OFFH ;enable the buffer outputs
LD IOUTENBL),A
JP FRAME1

;...................... MAIN PROGRAM SUBROUTINES

DIGITS: PUSH BC ; this routine expects a certain
CALL GET4 ; sequence of 8 incoming bits
CALL SHIFT to represent two IRIG digits
LD B,A
CALL GET4 ; The two BCD digits are returned
SRL A in the accumulator - the 1st
OR B ; in LSB position.
POP BC
RET

CHECK: CALL GET ;this routine checks to see
LD A,C p if the next bit is an 8mS
CP OFFH ; position identifier as expected.
RET p If it is not, an error has

; occured and the program must
" ; re-frame

SHIFT: SRL A ;This routine shifts the
SRL A upper 4 bits of the accum.
SRL A ; into the lower 4 bits
SRL A
RET

GET4: PUSH BC I This routine gets the next 4 bits from

CALL GET ;the incoming code string and returns them in
LD A,C ;the upper nibble of <A>.
SRL A
CALL GET
OR C
SRL A
CALL GET
OR C
SRL A
CALL GET
OR C
POP BC

4. RET

GET:

p This subroutine waits for the next incoming pulse (or bit) and
;returns in the <C> register a unique value depending on the
icomputed definition of the pulse.

The incoming pulse causes an interrupt through $0066 interrupt
;vector, the interrupt service routine is executed, and then returns
;to this routine. The program then returns to the calling program
twith the calculated bit definition in register <C>.
I While waiting for the next expected IRIG pulse, a 17ms timer
;is started. If this timer reaches zero before the next IRIG pulse
ts sensed, the program will assume IRIG has failed, and will begin
;execution of the BACKUP routine.

A-3

PUSH AF
LD A,7
LD ITMRO),A ;reset TO
LD A,TMO ;load timer 0 with the desired
LD (TMRO),A ; timer mode
LD A,MDO ;set mode definition register
LD (MDRO),A
LD HL,OFFFFH ;load timer 0 MODULUS with $FFFF
LD (TIMERO),HL
LD (TOSTAR),A ;enable the timer

If]RIG is still on, we should not make it all the way through the
;following 17mS delay caused by Ti. If we do, it indicates IRIG failure,
;and we will jump to the backup timer routine.

LD A,(BAKFLAG) ;if BAKFLAG=O, we will execute
CP OFFH ; the code immediately below
JR Z,WAIT ; jthis starts our 17ms timer)

LD A,7
LD (TMRI),A ;reset T1
LD A,TMIDEL ;set-up timer to create delay
LD (TMRl),A
LD A,42H

* LD HL,426811 ;this 2-byte modulus, ($4268), will produce a
LD (TIMRONE),HL ; 17ms count-down delay
LD ITISTAR),A ;start the delay

WAIT: LD A,08H ;un-mask RSTA in the I.C.R
OUT (ICR),A
LD A,(AOKAY) ;send acknowledge pulse via PAGE 30 select
POP AF ;enable both NMI and RSTA and wait

d El ; to see which is first
HALT ;(any other program may be executed herel)

;Return to here from interrupt service routine
RET ;return from 'CALL GET'

BIT:
--------------------- NMI interrupt service routine-------------------------

....... INTERRUPTED BY IRIG CODE ONLY ...

PUSH AF
LD (TOSTOP),A ; stop timer 0
LD HL,(TIMERO) ;get count from timer
BIT 0,H ;test bit 0 of high byte
JR Z,MARKER ;a marker if >8.16ms

LD A,L
CP 145
JR NC,ZERO

CP 52
JR NC,ONE

MARKER: LD C,OFFH ;long count is position identifier
CALL UPDATE
JR SKIP

2ERO: LD C,0 ;pulse is a logic zeroCALL UPDATE

JR SKIP

ONE: LD C,80H ;medium count is a logic one
CALL UPDATE

SKIP: POP AF ;return from 'BIT'
RET

BACKUP:

------- RSTA interrupt service routine ------------------------------------

%. INTERRUPTED BY TIMER 1 ONLY

A-4

PUSH HL
LD HL,(TIMRONE) ;read T1 modulus to reset TI output
POP HL
PUSH AF
LD (TOSTOP),A ;the first time through the routine,
LD A, IBAKFLAG) ;BAKFLAG-$O0
CP OFFH ;if BAKFLAG=$FF, we will skip
JR Z,CALLUP ;code immediately below to save time

FIRST: LD A,OFFH ;set backup flag
LD (BAKFLAG),A

LU A,TMlPULS ;configure Ti for 100Hz pulse generator
LD (TMR1),A
LD HL,9971 ;load MODULUS with 9971 to create a
LD (TIMRONE),HL ;0OHz timer that produces one active

;low output pulse every lOins to cause
;an RSTA every lOms.
;Note: this MODULUS value is determined
Isomewhat by trial and error since the
;execution of the program also adds
;to the delay.

LD (T1STAR),A ;start the pulse generator
CALLUP: CALL UPDATE ;increment the software timer

POP AF
RET ;go back and check for IRIG again

UPDATE:

----SOFTWARE TIMERS---

...WE SHOULD PASS THROUGH THIS LOOP EVERY lOins...............

LD A,(HUN) ;increment the hundredth's count
INC A ;on every pass --
LD (HUN),A ; --- then see if anything else
CP 10 needs to be incremented also
RET NIZ
XOR A
LD (HUN),A

TENTHS: LU AJTEN)
INC A
LD (TEN),A
CP 10
JR NZ,OUTPUT
XOR A
LD (TEN),A

SECONDS: LD A*(SECND) ;read buffer
INC A ; increment seconds count
DAA ; change to BCD
LD (SECND),A ;replace incremented seconds count
CF 60H1 ;was count..60?
JR NZ,OUTPUT ;if not, just print all values again
XOR A ;if so, reset to zero and then increment
LU (SECND),A a the minutes counter

MINUTES: LD A,(MINUT)
INC A
DAA
LU (MINUT),A
CF 60H1
JR NZ,OUTPUT
XOR A
LD (MINUT),A

HRS: LD A#(HOUR)
INC A
DAA
LU (HOUR),A
CP 24H1
JR MZQOUTPUT
XOR A
LD (HOURJDA

A-5

DAZE: LD A, (DAYS)
INC A
DAA
LD (DAYS),A
CP 0 ;compare to zero since 99+1-00 c>.1
JR NZ.OUTPUT
LD A.(DH)
INC A

LD (DH),A

OUTPUT:
LD A,(OUTENBL) ;check the flag
CP OFFH ;output is enabled if FLAGx$FF
jP NZvRETURN

LD A,(TEN)
LD (PRTC),A
LD A, (SECND)
LD (PORTA),A
LD A,(MINUT)
LD (PORTB),A
LD A, (HOUR)
LD (PRTB),A
LD A, (DAYS)
LD (PRTA),A
I.D A,(DH)
LD (PORTC),A

RETURN: RET

END

A-6

